
The Joy of GAP Packages

Leonard H. Soicher

Queen Mary, University of London

Groups in Galway 2009

GAP

• is an internationally developed system for

Computational Group Theory and related

areas;

• is Open Source, and freely available from

www.gap-system.org

• provides the GAP programming language

and a library of thousands of functions

written in this language;

• provides large data libraries of mathemat-

ical objects;

• is used in research and teaching for study-

ing groups and their representations, rings,

vector spaces, algebras, combinatorial struc-

tures, and more.

1

GAP Packages

• are structured user-contributions to GAP;

• provide many useful extensions to GAP;

• integrate smoothly with the GAP system

and its help system;

• are distributed with GAP, but package

authors get full credit and remain respon-

sible for the maintenance of their pack-

ages;

• may be “deposited” and/or submitted for

formal refereeing.

2

GAP Packages include

• GAP interfaces to other mathematical soft-

ware systems (such as singular) and to

standalone programs (such as ACE);

• packages for research in specialised ar-

eas of group theory and algebra (such as

Polycyclic and HAP);

• databases of group-related objects (such

as SmallGroups, CTblLib, and Tables of

Marks);

• tools for graphics (such as XGAP) and

documentation (GAPDoc);

• extensions of GAP into areas making use

of groups, such as graph theory (GRAPE),

coding theory (guava), and design theory

(DESIGN and RDS);

• significant contributions from researchers

at NUI Galway.

3

GAP Package refereeing

• is run by the GAP Council, an interna-

tional body of mathematicians and com-

puter scientists engaged in a broad spec-

trum of Computational Group Theory.

• A successfully refereed package obtains

the official status of “accepted”, as a

mark of quality and so that package au-

thors can obtain credit as they would for

a journal publication.

• Information on structuring, writing and

submitting a GAP package is available

from the GAP website.

• Package submissions for refereeing, as well

as informal queries, should be sent to

council@gap-system.org

• Please also talk to me here in Galway.

4

The first GAP Package: GRAPE

• GRAPE is a package for computing with

graphs together with groups acting on

them.

• It uses a group of automorphisms asso-

ciated to a graph to store that graph

compactly and to speed up computations

with that graph.

• GRAPE also provides a seamless inter-

face to Brendan McKay’s nauty programs

for computing automorphism groups of

graphs and testing graph isomorphism.

5

Simple GRAPE example

gap> LoadPackage("grape");

Loading GRAPE 4.3

(GRaph Algorithms using PErmutation groups),

by L.H.Soicher@qmul.ac.uk.

true

gap> J:=JohnsonGraph(4,2);

rec(isGraph := true, order := 6,

group := Group([(1,4,6,3)(2,5), (2,4)(3,5)]),

schreierVector := [-1, 2, 1, 1, 1, 1],

adjacencies := [[2, 3, 4, 5]],

representatives := [1],

names := [[1, 2], [1, 3], [1, 4],

[2, 3], [2, 4], [3, 4]],

isSimple := true)

gap> Size(J.group);

24

gap> G:=AutomorphismGroup(J);

Group([(3,4), (2,3)(4,5), (1,2)(5,6)])

gap> Size(G);

48

gap> GlobalParameters(J);

[[0, 0, 4], [1, 2, 1], [4, 0, 0]]

6

gap> D:=BipartiteDouble(J);

rec(isGraph := true, order := 12,

group := Group([

(1,4,6,3)(2,5)(7,10,12,9)(8,11),

(2,4)(3,5)(8,10)(9,11),

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)]),

schreierVector := [-1, 2, 1, 1, 1, 1, 3,

3, 3, 3, 3, 3],

adjacencies := [[8, 9, 10, 11]],

representatives := [1],

isSimple := true,

names :=

[[[1, 2], "+"], [[1, 3], "+"],

[[1, 4], "+"], [[2, 3], "+"],

[[2, 4], "+"], [[3, 4], "+"],

[[1, 2], "-"], [[1, 3], "-"],

[[1, 4], "-"], [[2, 3], "-"],

[[2, 4], "-"], [[3, 4], "-"]])

gap> GlobalParameters(D);

[[0, 0, 4], [1, 0, 3], [-1, 0, -1],

[4, 0, 0]]

7

The DESIGN Package

• is for constructing, classifying, partition-

ing and studying block designs;

• builds heavily on GRAPE, especially its

powerful generalised clique classifier with

respect to a group of automorphisms;

• applies graph automorphism group com-

putation and graph isomorphism testing

in GRAPE to provide those operations for

block designs;

• is very general and flexible, allowing for

the classification and study of many types

of designs (see designtheory.org);

• is used by combinatorialists, group theo-

rists, and statisticians.

8

Simple DESIGN example

gap> LoadPackage("design");

Loading GRAPE 4.3

(GRaph Algorithms using PErmutation groups),

by L.H.Soicher@qmul.ac.uk.

--

Loading DESIGN 1.3 (The Design Package for GAP)

by Leonard H. Soicher

(http://www.maths.qmul.ac.uk/~leonard/).

--

true

gap> Runtime(); # in milliseconds

4409

gap> D:=BlockDesigns(rec(v:=12, blockSizes:=[6],

> tSubsetStructure:=rec(t:=5, lambdas:=[1])));;

gap> Runtime(); # in milliseconds

8276

gap> Length(D);

1

gap> AllTDesignLambdas(D[1]);

[132, 66, 30, 12, 4, 1]

gap> Size(AutomorphismGroup(D[1]));

95040

9

Why write a GAP Package?

• You can provide high quality, specialised

algorithms and software for your partic-

ular area of research. [Start with a par-

ticular research focus and provide more

general functionality around that.]

• You get to make full use of the GAP

system, language, functions, data types,

documentation system, user/developer sup-

port, international reputation, and distri-

bution.

• Writing a GAP package provides an envi-

ronment, structure and discipline for you

to provide useful, well-structured, gen-

eral, well-documented and tested soft-

ware, very useful to you (over many years)

as well as others.

10

• You get to contribute to the worldwide

community of GAP users.

• You get full credit for your work – it can

be referenced like a paper.

• It’s enjoyable and very satisfying!

11

